
Modeling Interfaces and
Interface Protocols

Architecture verification for SMAP brought IV&V face to
face with Model Driven approach to Architecture Definition

Services offered at a SW interface specified with Protocols

IV&V Workshop 2010
Karl Frank
TASC General Scientist

Topics

Architecture Verification with SW Interface and Component Concepts
– Software Application Architecture: Components and Interfaces

• OO and SOA concepts differentiated from others
• Components, Interfaces and Service Protocols as encountered in SMAP

– How these are modeled in UML 2
– How such models can be used in Architecture Verification
– Examples: Manual Transmission and Space Camera

• What you may learn:
– Architecture verification for a model-driven project whose

architecture is based on OO and SOA concepts
– Details:

• protocol statemachine contrasted with behavioral statemachine
• How to tell from protocol statemachine, what service invocation sequences to

test for, which should work – and which probably won’t
• Relevance to commercialization and reuse of COTS components

Motivation
• Keeping up: NASA projects using protocol statemachines

– IV&V verifying architecture, design, and test plans for SMAP, a project
that is defines its architecture to us in these terms

• Architecture modeling with application level components and
interfaces supports tracing from high level down to tests, and
back up, for projects that model this way
– Interfaces an intermediate stage: services not how they are realized

– Technique for verifying that a service interface is adequately specified

• Fixing hole in command language specs:
– fallacy of the lexicon

• No language is defined by its lexicon

• Protocol statemachines fill one gap by defining validity in terms of context

• Mission incident could have been prevented by this approach

Failure to acquire fly-by photos

• A science mission had on-board command-operated
camera, to acquire images, to be beamed back

• At certain points in the mission, TakePicture
commands were sent
– Syntax checking at mission control and on-board

confirmed the commands were well formed
– Outcome could not be seen by scientists until the

opportunity for getting desired images was past
– After anxious waiting, radiated datastream that should

have had the images came back, empty!
• TakePicture needed to be preceded by an
EnableCamera command to have intended effect

Ongoing Fictional Example

• Next slides show deployment and component
diagrams of a possible system architecture, using
replaceable components on a variety of vehicles

• Example is fictionalized.
• Start with physical and comm models, move on

to a App level component and interface model
• From there to Protocol Statemachine

– A specialized form of statemachine for defining rules
client needs to follow in using the services

– Here, to use camera services, regardless of vendor

Example: Deployment Diagram

Physical context,
not a software-

centric view.
Application level
SW Architecture

and SW Interfaces
need a different

approach

Interfaces & Services modeled as
abstractions to be realized later

• These interfaces are NOT separate executables
mediating between clients and suppliers
– May be realized by “wrappers”, ORB brokers, etc.

• Recognizes big differences from physical interfaces
– Communicating system health and status on a data stream

is like fuel flowing thru pipes, but the wrong paradigm for
SOA – which is more like a remote procedure call

• because Services are invoked from client side.
• delivery of the service often is not a flow back to the client, but

the performance of a local behavior

– SMAP defines its architecture following the OO paradigm
on which UML 2 based its notation.

Real Building Blocks of Software
Architecture are components, CSCIs

• Software interfaces exposed by SW components
at ports, where other components can invoke
services available at that interface
– Service request originated by the Client
– May ride atop an ongoing data stream, which does fit

a flow paradigm in communication engineering

• App Services reside in the top (application) layer
of communication model introduced by OSI

From SW IV&V perspective

Application Layer rides on top of physical systems and communication architecture

• Systems and Communication
Engineering concerns are not
our topic here

• Application architecture model
of SMAP hides those concerns

2 Components
realize same

interface
used by 1 client

is a central concern
in validating an
application SW
architecture based
on OO paradigm

Internal differences among cameras likely, best
kept private

Visibility indicators for
actual operations are not
appropriate for the
abstract services in an
interface

Alternative Views
• Ball and Socket

view hides
discrete services

Alternative terminology
and notation for
Ball & Socket … to
show services offered
at the interface

SMAP Architecture Model Concepts
• Interface accessed thru Port on Component

– Models components as black boxes to maintain
independence of IV&V models from implementation

– Port typed for static check of data in or out

• Interface is an abstraction:
– user does not need to know about implementation,

– Protocol encompasses all services offered at interface

• Hence, topic is really a unity:
– Modeling Component Interfaces without modeling

protocol only establishes the static correctness of a
component architecture.

– Topic goes beyond static architecture audit to dynamic
testing of architecture thru its interfaces

Component contrasted with Interface

• Many actual components from diverse
developers realize the SAME interface
– Assembling a valid system depends on interfaces

• Interchangeability of components depends on
equivalence of interfaces

– Interfaces define external black box view
– Interfaces declare services as ABSTRACT operations
– There are rules for “correct” use of an interface

• Recall the example of the manual transmission
• We want a way to define a dynamic black box view

Model services offered at interface

By contract: preconditions, invariants,
postconditions for each service, one – at – a time
– This is a static representation, method signature plus
– Services offered in an interface often part of a set,

used in certain dynamic contexts, not others
– Not modeled as Behavior (no actions represented)

Need an approach for dynamic context modeling
Consider dynamics of interface for operating a car:

– Don’t move the stickshift and THEN step on clutch
– You step on the clutch and THEN shift
– We need a way to model these contextual rules

Use a Protocol Statemachine
• Assume user sends messages to car transmission
• User doesn’t need to know about what’s under the hood,

Except for what operations are OK in what context
• Convention is: valid messages are those that trigger

transitions in a simplified statemachine

Manual Transmission as a
black box operated by sending

messages to its interface

Protocol for using manual transmission

Presenter
Presentation Notes
Protocol shows no transition for throwstickshift message, if received while Clutch Engaged – so what will happen is formally undefined.
(non-deterministic)

Behavioral Statemachine for Actual Component

• Behavioral statemachine shows internals

Protocol statemachine

• Simpler than ordinary UML statemachines
• For characterizing the rules for invoking services at a

software interface
– Protocol statemachines are linked in UML models to

Interfaces, whereas “ordinary” UML statemachines are
linked to components which realize interfaces

– Protocol statemachines are for defining the rules for using
the services exposed at an interface, and so they conceal
the actual workings of the component

• Transitions are triggered by invocations of service – the messages
that arrive at the interface

• Shows changes in state externally visible (meaning, the modal
behavior that matters to the client using the interface)

• No effects (internal call to private objects) allowed transitions

From UML 2 Spec

Protocol state machines are used to express usage
protocols. Protocol state machines express the
legal transitions that a classifier can trigger. The
state machine notation is a convenient way to
define a lifecycle for objects, or an order of the
invocation of its operation.
Protocol state machines do not preclude any
specific behavioral implementation. They enforce
legal usage scenarios. Interfaces and ports can be
associated to this kind of state machines.

Conceptual Overview

Specifications

Architecture
Documents

Tests on
components
conducted in
Testing
Environment

Requirements

Concept of
Operations for SUT

UML Eclipse

Generative & Navigable Toolchain

UML Models lead from interface design to tests

Presenter
Presentation Notes
Adapted from a slide created by Tom Gullion

A Tool for Testing

• Objectives
– Close a gap in our ability to define relevant tests

• What system should not be expected to do
– If test violates protocol, is the test is inappropriate?

– Intent of a protocol statemachine as design artifact is
distinctive

• Adequate interface specifications for decoupled
architectures

• Sets state for later ability to verify conformance of
implementations to interface specifications

23 Oct 2008
Assertion Library Tooling

22

tr
ac

e

Traceability Summary

30 Aug 2010
Assertion Library Tooling

23

Requirements Level n+1

UML SRM Level j

Refined UML Component and
Statemachine Model Level j+1

Suite of Event-based Test scripts

Test analysis
and reporting

Test analysis can
navigate back up
the traceability chain
to report context of
pass or fail

Test Outcomes

SUT running in
Test Environment

tr
ac

e
tr

ac
e

Requirements Level n

tr
ac

e

Why Model Components & Interfaces?

• Modeling to the level of components is appropriate for
defining and verifying architecture

• Interfaces and the services they offer are the external
view of components that matters

• Why?
1. IV&V arch verification should not mess with internals
2. Model of component interfaces useful in verifying that

components integrate as a working system
3. Service concept; is there a provider for every required

interface? Match of providers and consumers provides a
static audit of completeness.

Why Model Interface Protocols?

1. Designing the interface is more than specifying
the services one-at-a-time
– Preconditions for successful invocation of a service

are established by postcondition of a predecessor.
– Successful maintenance of an invariant condition not

to be disrupted by an intervening invocation.
2. Protocol Statemachines add dynamic view of

how the services make a complete set
– Audit of service preconditions and postconditions

against the rules set out in the protocol establish a
kind of dynamic completeness for the interface.

Why Model Interface …? Continued

3 Testing actual components is more than testing
services one-at-a-time
– Does the component reject illegal messages, even when

syntactically well-formed, based on dynamic context?
– Does the component respond to messages as specified by

changes in what it will respond to?

4 Actual behavior of implementations is mediated by
protocols in Architecture Model, which thus support
traces from implementation back to requirements
– A behavioral statemachine and whitebox testing is not

Architecture Verification – its place is later in cycle

Why Model Protocols .. Concluded

• Critically important for testing -- must be able to
test actual components for conformance to
published interfaces
– Actual behaviors should conform to the protocol:

• Nominal case tests respect protocol: test driver
who shifts without clutching has no right to
complain of stripped gears.

• Status of tests that violate protocols is topic of
debate, behavior of component SUT when service
invocations violate protocol is undefined

Back to mission incident

Deployment Of Cameras from different vendors

IV&V to verify
conformance of cameras
to the standard YCamera
Software Interface

Y-Camera Commercialization
• Suppose Y-Cameras specified as components providing a SW interface

– Y-Cameras can be provided by a number of qualified vendors

• Controlled by radiated commands originated at Mission Control, or by autonomous
on-board software, or by other clients

• Y-Camera systems offer a software interface for functional control

• Any component implementing the Y-Camera specs can, on demand, point at a
given environmental direction

– Like a human cameraman told to point the camera in the direction of the actor
starring in a scene, Cameras should track an assigned target, compensating for
shifting platform attitude, until pointed elsewhere or deactivated.

• Take-a-picture function requires start and end exposure services

– Can take a series of images while pointing at the same target

– May want to point in the right direction first, await some event

• Deactivate device to conserve power, aka sleep

Four services exposed
• But they are not unrelated!
• How are they to be used?
• When you first establish

communication with any
Ycamera should you tell it to
startExposure? Dynamic
context, not static validation

• What state does it reach after 2
pointAt messages?
– Note: not what will it DO

• Answers depend on the
protocol statemachine

Protocol for using the interface
Contextually valid messages specified relative
to context, meaning current state of interface

Tabular View
• Blue column labels show possible states
• Green row labels show possible events (messages or

invocations)
• Black labels at crossings show next state, if protocol permits!
• Some messages are contrary to protocol in a given state

– have no defined transition (non-deterministic)

Quiescent StayingOnTarget TakingPicture

pointAt(target) StayingOnTarget StayingOnTarget Not Legal

startExposure() Not Legal TakingPicture Not Legal

endExposure() Not Legal Not Legal StayingOnTarget

sleep() Quiescent Quiescent Not Legal

Answers and discussion
What state reached by 2 pointAt(target) messages?
1. Depends on context

current state, determined by the prior sequence of messages.
Protocol says pointAt(target) should not be sent while camera
is taking a picture. If this should happen, results undefined
and likely to be undesirable.

2. This protocol statemachine does not address the
question of whether the actual parameter (where to
point) changes in successive pointAt(target) events.

3. Not the purpose of the protocol to model intended
semantics of the pointAt(target) message as realized
internally in the component

Documentation on abstract method, aka service,
pointAt(target), owned by the YCamera interface, could show
commonality among different realizations.

Summary

Architecture Verification using UML interface and protocol statemachine models
• Verification of software architectures by using UML(Unified Modeling Language)

interface and statemachine models, in the context of the broader systems engineering
problem of ensuring that complex systems can be integrated into a working whole.

• Introduction of the protocol statemachine concept using manual transmission example
• A failure this approach would have prevented: The case of the camera that did not take

pictures because the command to take a picture needed to be preceded by a command
to enable the camera.

Verification in General
• The goal of verification is, in general terms, proving that certain properties hold or do

not hold, of some subject system. If the architecture is specified in terms of the UML
and OO concepts, the composability of the system can only be established by using the
concepts used by the architects.

OO style Software Architecture Verification in Particular
• More specifically, the property we are concerned with verifying is that the system can

be produced by successful integration of a variety of separately produced subsystems,
whose organization is described as in terms of components and interfaces as these are
conceived in the OO paradigm. Hence, the topic of this presentation is software
architecture verification.

	Modeling Interfaces and �Interface Protocols
	Topics
	Motivation
	Failure to acquire fly-by photos
	Ongoing Fictional Example
	Example: Deployment Diagram
	Interfaces & Services modeled as abstractions to be realized later
	Real Building Blocks of Software Architecture are components, CSCIs
	 From SW IV&V perspective
	2 Components realize same interface�used by 1 client
	Internal differences among cameras likely, best kept private
	Alternative Views
	SMAP Architecture Model Concepts
	Component contrasted with Interface
	Model services offered at interface
	Use a Protocol Statemachine
	Protocol for using manual transmission
	Behavioral Statemachine for Actual Component
	Protocol statemachine
	From UML 2 Spec
	Conceptual Overview
	A Tool for Testing
	Traceability Summary
	Why Model Components & Interfaces?
	Why Model Interface Protocols?
	Why Model Interface …? Continued
	Why Model Protocols .. Concluded
	Back to mission incident
	Deployment Of Cameras from different vendors
	Y-Camera Commercialization
	Four services exposed
	Protocol for using the interface
	Tabular View
	Answers and discussion
	Summary

